Как устроена турбина в двигателе автомобиля


Принцип работы турбины. Как работает турбонаддув в автомобиле

Принцип работы турбины. Как работает турбонаддув в автомобиле

Для более ясного представления о том, как работает турбина в автомобиле, прежде всего необходимо ознакомится с принципом работы двигателя внутреннего сгорания. Сегодня, основная масса грузовых и легковых автомобилей оснащаются 4-х тактными силовыми агрегатами, работа которых контролируется впускными и выпускными клапанами.

Каждый из рабочих циклов такого двигателя состоит из 4 тактов, при которых коленвал делает 2 полных оборота

 

Впуск — при этом такте осуществляется движение поршня вниз, при этом в камеру сгорания поступает смесь топлива и воздуха (если это бензиновый двигатель) или только воздуха в случае если это дизельный агрегат.

Компрессия — при этом такте происходит сжатие горючей смеси.

Расширение — на этом этапе происходит воспламенение горючей смеси при помощи искры, вырабатываемой свечами. В случае с дизельным двигателем, воспламенение осуществляется произвольно под действием высокого давления впрыска.

Выпуск — поршень двигается вверх, при этом освобождаются выхлопные газы.

Такой принцип работы двигателя определяет следующие способы повышения его эффективности:

- Установка турбонаддува
- Увеличение рабочего объёма двигателя
- Увеличение числа оборотов коленчатого вала двигателя

Как работает турбина в автомобиле?

 

 

 

Увеличение рабочего объёма двигателя

Увеличение объёма двигателя возможно двумя путями: либо увеличением объема камер сгорания, либо — увеличением количества цилиндров в силовом агрегате. Однако такой способ повышения мощности не совсем оправдан, так как имеет ряд недостатков, среди которых: повышенный расход топлива.

Увеличение числа оборотов коленчатого вала двигателя

Еще один возможный способ повышения производительности двигателя заключается в увеличении числа оборотов коленчатого вала. Это достигается путем увеличения количества ходов поршня за единицу времени. Но использование такого способа имеет жесткие ограничения, которые обусловлены техническими возможностями двигателя. Кроме этого, такая модернизация приводит к падению эффективности работы силового агрегата из-за потерь при впуске и других операциях.

Турбонаддув

В двух предыдущих способах двигатель использует воздух, который поступает благодаря собственному нагнетанию. При использовании турбокомпрессора в цилиндр поступает тот же объем воздуха но с предварительным его сжатием. Это дает возможность поступлению большего количества воздуха в цилиндр, благодаря чему появляется возможность сжигания большего объема топлива. При использовании такой технологии, мощность двигателя возрастает по отношению к количеству потребляемого топлива и объему двигателя.

Охлаждение воздуха

В процессе компрессии воздух может нагреваться вплоть до 180 С. Однако воздух имеет свойство увеличения плотности при охлаждении, что дает возможность значительно увеличить объем воздуха, попадающего в цилиндр. Кроме этого, увеличение плотности воздуха существенно снижает расход топлива и количество выбросов продуктов сгорания.

Также существует два разных типа турбонаддува: турбокомпрессор, основанный на использовании энергии выхлопных газов и турбонагнетатель с механическим приводом.

Турбонагнетатель с механическим приводом

В случае использования такого типа компрессии, воздух сжимается благодаря специальному компрессору, который работает от привода двигателя. Но такой метод имеет один большой недостаток. Все дело в том, что при использовании механического турбокомпрессора часть мощность двигателя уходит на обеспечение работы самого компрессора, по этому двигатель, оборудован таким нагнетателем, имеет больший расход топлива чем обычный двигатель такой же мощности.

Турбокомпрессор основанный на использовании энергии выхлопных газов

Такой метод основан на использовании энергии выхлопных газов, которая направлена на привод турбины. При использовании такого способа отсутствует механическое соединение с двигателем, благодаря чему потери мощности не происходит.

Основные преимущества двигателей с турбонаддувом

1) Турбодвигатель имеет меньшее показатели по расходу топлива нежели двигатель без турбины той же мощности и при прочих равных условиях.

2) Силовой агрегат с с турбонаддувом имеет заметно лучшие показатели соотношения веса двигателя к развиваемой им мощности.

3) Использование турбокомпрессора открывает новые возможности по оптимизации других параметров и характеристик двигателя, а также улучшения крутящего момента, что позволит избежать очень часто переключения передач при езде в пробках или гористой местности.

4) Турбодвигатели работают тише чем агрегаты такой же мощности без турбонаддува.

Как работает турбина Тесла

Большинству людей известен Никола Тесла, эксцентричный и блестящий человек, который приехал в Нью-Йорк в 1884 году, как отец переменного тока, формы электричества, которая снабжает электроэнергией практически все дома и предприятия. Но Тесла был потрясающим изобретателем, который применил свой гений к широкому кругу практических задач. В общей сложности он обладал 272 патентами в 25 странах, причем 112 в одних только Соединенных Штатах. Вы могли бы подумать, что из всей этой работы Тесла держал бы свои изобретения в области электротехники - те, которые описывали полную систему генераторов, трансформаторов, линий электропередачи, двигателя и освещения - дорогую его сердцу.Но в 1913 году Тесла получил патент на то, что он назвал своим самым важным изобретением. Этим изобретением была турбина, известная сегодня как турбина Тесла, турбина с пограничным слоем или турбина с плоским диском.

Интересно, что использование слова «турбина» для описания изобретения Теслы кажется немного вводящим в заблуждение. Это потому, что большинство людей считают турбину валом, к которому прикреплены лопасти, например лопасти вентилятора. Фактически, словарь Вебстера определяет турбину как двигатель, приводимый в действие силой газа или воды на лопастях вентилятора.Но турбина Тесла не имеет лопастей. Он имеет ряд плотно упакованных параллельных дисков, прикрепленных к валу и расположенных в герметичной камере. Когда жидкость попадает в камеру и проходит между дисками, диски поворачиваются, что, в свою очередь, вращает вал. Это вращательное движение может использоваться различными способами: от питания насосов, воздуходувок и компрессоров до запуска автомобилей и самолетов. Фактически, Тесла утверждал, что турбина была самым эффективным и самым простым в разработке роторным двигателем.

Если это правда, почему турбина Тесла не получила более широкого применения? Почему он не стал таким же вездесущим, как другой шедевр Теслы - передача энергии переменного тока? Это важные вопросы, но они вторичны по отношению к более фундаментальным вопросам, например, как работает турбина Тесла и что делает технологию такой инновационной? Мы ответим на все эти вопросы на следующих нескольких страницах. Но сначала нам нужно рассмотреть некоторые основы

.

Как работают 4 типа турбинных двигателей

Жить с полетной палубы

Газовые турбинные двигатели прошли долгий путь с 1903 года. Это был первый год, когда газовая турбина производила достаточно мощности, чтобы поддерживать свою работу. Проект был выполнен норвежским изобретателем Эгидусом Эллингом, и он произвел 11 лошадиных сил, что было огромным подвигом в то время.

В наши дни газотурбинные двигатели бывают всех форм и размеров, и большинство из них производят , что на больше, чем 11 лошадиных сил.Здесь представлены 4 основных типа турбинных двигателей, а также плюсы и минусы каждого.

1) Турбореактивный двигатель

Heinkel He 178, первый в мире турбореактивный самолет

турбореактивные двигатели были первыми изобретенными типами газотурбинных двигателей. И хотя они выглядят совершенно иначе, чем поршневые двигатели в вашем автомобиле или самолете, они работают по одной и той же теории: впуск , компрессия, мощность, выпуск .

Как работает турбореактивный двигатель?

Турбореактивные двигатели работают, пропуская воздух через 5 основных секций двигателя:

Шаг 1: Воздухозаборник
Воздухозаборник представляет собой трубу перед двигателем.Забор воздуха может выглядеть просто, но это невероятно важно. Задача впуска - плавно направлять воздух в лопатки компрессора. На низких скоростях он должен минимизировать потерю воздушного потока в двигатель, а на сверхзвуковых скоростях он должен замедлять воздушный поток ниже Маха 1 (воздух, поступающий в турбореактивный двигатель, должен быть дозвуковым, независимо от того, насколько быстро летит самолет ).

Шаг 2: Компрессор
Компрессор приводится в действие турбиной в задней части двигателя, и его работа заключается в сжатии поступающего воздуха, что значительно увеличивает давление воздуха.Компрессор представляет собой серию «вентиляторов», каждый из которых имеет все меньшие и меньшие лопасти. Когда воздух проходит через каждую ступень компрессора, он становится более сжатым.
Шаг 3: Камера сгорания
Далее идет камера сгорания, где волшебство действительно начинает происходить. Воздух высокого давления объединяется с топливом, и смесь воспламеняется. Когда топливно-воздушная смесь горит, она движется через двигатель к турбине. Турбореактивные двигатели работают очень обедненно, примерно с 50 частями воздуха на каждую 1 часть топлива (большинство поршневых двигателей работают в диапазоне от 6 до 1 до 18 до 1).Одна из главных причин, по которой турбины работают в таком наклоне, заключается в том, что для охлаждения турбореактивного двигателя необходим дополнительный поток воздуха.
Шаг 4: Турбина
Турбина - это еще одна серия «вентиляторов», которые работают как ветряная мельница, поглощая энергию высокоскоростного воздуха, проходящего через нее. Лопатки турбины соединены с валом и вращают его, который также соединен с лопатками компрессора в передней части двигателя. «Круг жизни» турбореактивного двигателя почти завершен.

Шаг 5: Выхлоп (он же «Я отсюда!»)
Высокоскоростная сгоревшая топливно-воздушная смесь выходит из двигателя через выпускную форсунку.Когда высокоскоростной воздух выходит из задней части двигателя, он создает тягу и толкает самолет (или все, к чему он прикреплен) вперед.

Турбореактивный вынос:

  • Плюсы:
    • Относительно простой дизайн
    • Способный к очень высоким скоростям
    • Занимает мало места
  • Минусы:
    • Высокий расход топлива
    • Громко
    • Плохая производительность на низких скоростях

2) Турбовинтовой двигатель

Жить с полетной палубы

King Air с турбовинтовыми двигателями

Следующие три типа турбинных двигателей - это все формы турбореактивного двигателя, и мы начнем с турбовинтового двигателя.Турбовинтовой двигатель представляет собой турбореактивный двигатель, соединенный с пропеллером через систему зацепления.

Как работает турбовинтовой двигатель?

Шаг 1 : турбореактивный двигатель вращает вал, который соединен с коробкой передач

Шаг 2 : коробка передач замедляет вращение, а самая медленная передача соединяется с винтом

Шаг 3 : Пропеллер вращается по воздуху, создавая тягу точно так же, как ваша Cessna 172

Разборка турбовинтового двигателя:

  • Плюсы:
    • Очень экономичный расход топлива
    • Наиболее эффективен на средней скорости между 250-400 узлами
    • Наиболее эффективен на средних высотах от 18 000 до 30 000 футов
  • Минусы:
    • Ограниченная прямая скорость полета
    • Системы передачи тяжелы и могут сломаться

3) Турбовентиляторный двигатель

Жить с полетной палубы

Некоторые широкофюзеляжные турбовентиляторные двигатели могут производить более 100 000 фунтов тяги.

Турбовентиляторы

объединяют лучшее из обоих миров между турбореактивными двигателями и турбовинтовыми двигателями.И вы, вероятно, увидите эти двигатели, когда отправитесь в аэропорт на следующий рейс.

Как работает турбовентилятор?

Турбовентиляторы работают, прикрепляя канальный вентилятор к передней части турбореактивного двигателя. Вентилятор создает дополнительную тягу, помогает охлаждать двигатель и снижает уровень шума двигателя.

Шаг 1 : Входящий воздух делится на два отдельных потока. Один поток обтекает двигатель (обводной воздух), а другой - через сердечник двигателя.

Шаг 2 : Обводной воздух проходит вокруг двигателя и ускоряется канальным вентилятором, создавая дополнительную тягу.

Шаг 3 : Воздух проходит через турбореактивный двигатель, продолжая создавать тягу.

Турбофан вынос:

  • Плюсы:
    • Экономия топлива
    • тише турбореактивных
    • Они выглядят потрясающе
  • Минусы:
    • Тяжелее турбореактивных
    • Большая лобовая площадь, чем у турбореактивных двигателей
    • Неэффективно на очень больших высотах

Турбовентилятор Pratt & Whitney F100 с форсажной камерой F-16

4) Турбовальный двигатель

Вертолет Bell 206 с турбовальным двигателем

Турбовальные двигатели

в основном используются на вертолетах.Самое большое различие между турбовальными и турбореактивными двигателями заключается в том, что турбовальные двигатели используют большую часть своей мощности для вращения турбины, а не для создания тяги в задней части двигателя.

Как работает турбовальный вал?

Турбовальные валы - это, по сути, турбореактивный двигатель с большим валом, соединенным с задней его частью. А поскольку большинство этих двигателей используются на вертолетах, этот вал соединен с лопастью ротора.

Шаг 1 : Двигатель по большей части работает как турбореактивный двигатель.

Шаг 2 : Приводной вал, прикрепленный к турбине, приводит в действие трансмиссию.

Шаг 3 : коробка передач передает вращение от вала к лопасти ротора.

Шаг 4 : Вертолет с помощью неизвестных и магических средств способен летать по небу.

Вывод турбовального вала:

  • Плюсы:
    • Гораздо более высокое отношение мощности к весу, чем у поршневых двигателей
    • Обычно меньше поршневых двигателей
  • Минусы:
    • Громко
    • Зубчатые передачи, соединенные с валом, могут быть сложными и выходить из строя

4 типа двигателей, основанные на одной базовой концепции

Газотурбинные двигатели прошли долгий путь за последние 100 лет.И хотя турбореактивные двигатели, турбовинтовые турбовентиляторы, турбовентиляторы и турбовалы имеют свои различия, они по сути производят мощность одинаково: впуск, сжатие, мощность и выхлоп.


Станьте лучшим пилотом.
Подпишитесь, чтобы получать последние видео, статьи и тесты, которые сделают вас умнее, безопаснее пилота.


,

Как работают квазитурбинные двигатели | HowStuffWorks

Конструкция двигателя находится в месте слияния трех факторов: опасения по поводу того, как выбросы автомобилей будут влиять на окружающую среду; рост цен на газ и необходимость сохранения ресурсов ископаемого топлива; и осознание того, что автомобиль, работающий на водороде - будь то на водородном топливном элементе или водородном внутреннем сгорании - не оправдает своих надежд в ближайшем будущем. В результате многие инженеры уделяют больше внимания совершенствованию двигателя внутреннего сгорания.

Квазитурбинный двигатель, запатентованный в 1996 году, является именно таким улучшением. В этой статье мы представим движок Quasiturbine и ответим на следующие вопросы:

  • Откуда появилась идея двигателя?
  • Какие части двигателя Quasiturbine?
  • Как работает двигатель Quasiturbine?
  • Как он сравнивается по производительности с другими двигателями внутреннего сгорания?

Давайте начнем с рассмотрения некоторых основ двигателя.

Чтобы увидеть, как работает квазитурбинный двигатель, вы должны понять некоторые основы двигателя.

Основной принцип, лежащий в основе любого двигателя внутреннего сгорания, прост: если вы поместите небольшое количество воздуха и высокоэнергетического топлива (например, бензина) в небольшое замкнутое пространство и подожжете его, газ будет быстро расширяться, выделяя невероятное количество энергии. ,

Конечная цель двигателя - преобразовать энергию этого расширяющегося газа во вращательное (вращающееся) движение. В случае автомобильных двигателей, конкретной целью является быстрое вращение карданного вала на .Карданный вал связан с различными компонентами, которые передают вращательное движение на колеса автомобиля.

Чтобы использовать энергию расширяющегося газа таким образом, двигатель должен циклически проходить через ряд событий, которые вызывают много крошечных газовых взрывов. В этом цикле сгорания двигатель должен:

  • Пусть смесь топлива и воздуха в камеру
  • Сжатие топлива и воздуха
  • Зажечь топливо, чтобы создать взрыв
  • Выпуск выхлопа (воспринимайте его как побочный продукт взрыва)

Затем цикл начинается заново.

Как работает двигатель подробно объясняет, как это работает в обычном поршневом двигателе. По существу, цикл сгорания толкает поршень вверх и вниз, который вращает ведущий вал с помощью коленчатого вала.


Хотя поршневой двигатель является наиболее распространенным типом автомобилей, квазитурбинный двигатель работает больше как роторный двигатель. Вместо использования поршня, подобного типичному автомобильному двигателю, роторный двигатель использует треугольный ротор для достижения цикла сгорания.Давление сгорания содержится в камере, образованной частью корпуса с одной стороны и поверхностью треугольного ротора с другой стороны.

Путь ротора удерживает каждый из трех пиков ротора в контакте с корпусом, создавая три отдельных объема газа. Когда ротор движется вокруг камеры, каждый из трех объемов газа попеременно расширяется и сжимается. Именно это расширение и сжатие втягивает воздух и топливо в двигатель, сжимает его, создает полезную мощность по мере расширения газов, а затем выталкивает выхлопные газы.(См. Как работают роторные двигатели для получения дополнительной информации).

В следующих нескольких разделах мы увидим, как Quasiturbine продвигает идею роторного двигателя еще дальше.

,

Смотрите также